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Abstract
A detailed study of the variation of the thermoelectric figure of merit of Si–
Ge alloys with alloy composition, temperature and carrier density is the subject
matter of this paper. Such a study is of particular interest at higher temperatures
when minority carrier effects (MCEs) start to play a significant role in degrading
the performance, thereby setting an upper limit of high temperature application.
Alloys rich in silicon content are of greater interest and attention for the obvious
reason that silicon, due to its large energy gap, is important in pushing the MCE
to higher temperatures. The purpose of the present paper is to examine in depth
all those processes that tend to degrade the material performance.

Thermoelectric materials are heavily doped and hence a single-band conduction model
(conduction band in n-type,valence band in p-type) is quite a good choice at low and moderately
high temperatures. However, with increasing temperature the applicability of single-band
conduction becomes questionable. A two-band conduction model is then necessary. For
single-band conduction the thermoelectric figure of merit (Goldsmid 1960, 1988, Rowe and
Bhandari 1983, Rowe 1995) is given by

Z = α2σ/λ (1)

where α, σ and λ refer to the Seebeck coefficient, electrical conductivity and thermal
conductivity of the material, respectively.

Low thermal conductivity materials are a better choice as thermoelements for the obvious
reason. For low doping levels this can be decided by the lattice contribution to thermal
conductivity which is the dominant heat transport mechanism. However, in the heavily doped
materials electronic (or hole) contribution to thermal transport could not be ignored. Electronic
(hole) thermal conductivity in the heavily doped samples is essentially due to a single carrier
type. However, at high temperatures one must take into account contributions from both the
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bands and also the bipolar contribution. The total thermal conductivity (Drabble and Goldsmid
1961, Bhandari and Rowe 1988, Slack and Hussain 1991, Rowe 1995) is then given as

λ = λL + λe + λh + λb (2)

where subscripts L, e, h and b, respectively, refer to lattice, electron, hole and electron–hole
pair (bipolar) contributions. On application of a temperature gradient electron–hole pairs flow
down the temperature gradient transporting energy, but no net charge. A sharp rise in thermal
conductivity due to these contributions may result in degradation of material performance.

Thermoelectric materials being heavily doped, the usual assumption of a parabolic energy
band with a constant effective mass for carriers may not correspond to real situation. To get
a reasonably accurate estimate of the system behaviour deviations from the strict parabolic
band need to be taken into consideration. The present calculation incorporates the effect of
non-parabolicity of energy bands by considering an electron (hole) effective mass (Ravich et al
1971, Goldsmid 1988) given by

m∗ = m∗
0(1 + 2βgη) where βg = kBT

Eg
and η = E

kBT
. (3)

βg and η refer respectively to the inverse of the reduced energy band gap and reduced carrier
energy. m∗

0 refers to the effective mass at the band edge.
A theoretical calculation of all the relevant properties requires information about the

carrier relaxation time which may be determined by various scattering mechanisms. At the
temperatures of interest in the present work (600–1600 K) acoustic phonon scattering is the
dominant mechanism and is largely responsible for limiting the carrier mean free path. In
a many-valley semiconductor such as the Si–Ge alloy system both inter- and intra-valley
scattering of carriers must be taken into account. This should be particularly so for higher
temperature calculations. However, in view of too many complications arising out of the
non-parabolic nature of energy bands, several equivalent valleys and minority carrier effects
(MCEs), we have currently restricted ourselves to only intra-valley scattering.

The corresponding relaxation time (Smirnov and Ravich 1967, Ravich et al 1971), which
takes account of the non-parabolicity of the energy bands, is given by

τ−1
ac ∝ [η(1 + βgη)]

1
2 [1 + 2βgη]. (4)

For non-parabolic energy bands the transport coefficients can be expressed in terms of
generalized Fermi integrals (Smirnov and Ravich 1967, Ravich et al 1971, Rowe and Bhandari
1985, Rowe 1995) defined by

n Lm
l (ξ, βg) =

∫ ∞

0

(
−∂ f

∂η

)
ηn[η(1 + βgη)]m(1 + 2βgη)l dη. (5)

Here f is the Fermi distribution function and ξ = (EF)/(kBT ) refers to reduced Fermi energy.
The indices n, m and l take different values for various scattering processes.

The reduced electrical conductivity σ ′ is given by

σ ′ =
(

kB

e

)2 T

λl
σ = K NV

0 L1
−2

T

[m∗
cλl ]

(6)

where NV is the number of equivalent valleys and m∗
c is the conductivity effective mass.

In the present calculations no distinction has been made between the density-of-states and
conductivity effective masses. The constant K depends on the elastic constant C11 and acoustic
deformation potential (ξD) and is given by Drabble and Goldsmid (1961), Bhandari and Rowe
(1988), Rowe (1995)

K = k2
BhC11

3π2ξ2
D

. (7)
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Figure 1. Variation of power factor (α2σ ) with carrier density (n) at temperature 1000 K for
different alloy compositions of Six Ge(1−x).

The contribution to the Seebeck coefficient from the j th band can be expressed as

α j = kB

e

[ 1 L1
−2

0 L1
−2

− ξ j

]
. (8)

In two-band conduction the electrical conductivity is the sum of contributions from both
electron and hole bands. The total Seebeck coefficient (Rowe and Bhandari 1985, Rowe
1995) is given by

α = [αeσe + αhσh]/(σe + σh). (9)

Increased electrical conductivity for higher doping levels will also be accompanied by an
increased electron (hole) contribution to the thermal transport which now becomes significant
and needs to be taken care of. The electronic contribution to the thermal conductivity is given
by

λe = K NV
0 L1

−2
T

m∗
c

( 2 L1
−2

0 L1
−2

−
[ 1 L1

−2
0 L1

−2

]2)
. (10)

Equations (6) and (10) help us in determining the Lorenz number defined as

Le,h = λe,h

σ T
. (11)

Thermoelectric figure of merit

For two-band conduction the reduced figure of merit (Ure 1972, Rowe 1995) is given by

(Z T )′2B = (α′
hσ

′
h − α′

eσ
′
e)

2

(σ ′
e + σ ′

h)(1 + Leσ ′
e + Lhσ

′
h)

. (12)

Here α′
e and α′

h refer to reduced Seebeck coefficients defined by α′
e,h = (e/kB)αe,h. This

expression excludes a bipolar contribution to thermal conduction. In the intrinsic region, a
sufficient number of electron–hole pairs are created, which conduct heat but not electric charge.
Including the bipolar contribution to the thermal conductivity the figure of merit (Goldsmid
1960, Ure 1972, Rowe and Bhandari 1985, Rowe 1995) becomes

Z T = (α′
hσ

′
h − α′

eσ
′
e)

2

{(σ ′
e + σ ′

h)(1 + σ ′
e Le + σ ′

h Lh) + σ ′
eσ

′
h(δe + δh + ξg)2} (13)

where δ = 1 L1
−2/

0 L1
−2 and ξg = Eg/kBT .
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Figure 2. (a) Variation of figure of merit (Z T ) with n at 600 K for different alloy compositions of
Six Ge(1−x). (b) Variation of figure of merit (Z T ) for fixed n = 6 × 1020 cm−3 and (Z T )max with
different alloy compositions at 600 K.

Optimization of material performance

All thermoelectric optimization programmes take up independently varying parameters and
then look into the combination of such parameters which may yield the highest figure of merit.
For theoretical models it is very useful to consider reduced Fermi energy as an independent
variable and vary it over a wide range—from the nondegenerate to the degenerate range.
However, physical realization of this includes samples which are undoped on the one hand to
samples which are doped to saturation. To assume a particular scattering type, such as acoustic
phonon scattering, may not be true in general for the entire range. However, the temperature
range of interest in the present context is such that this assumption would not create a serious
error as all donor states are already ionized. However, exclusion of intervalley scattering is
not wholly justified, and should be taken care of in an extended version of the work.

In addition to ξ (reduced Fermi energy), alloy composition (percentage silicon content x)
has been varied for x � 0.5. Energy bandgap is known to vary almost linearly in the range
of composition. We have assumed a similar scheme of interpolation for elastic constants,
effective mass and deformation potential.
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Figure 3. (a) Variation of figure of merit (Z T ) with n at 800 K for different alloy compositions.
(b) Variation of figure of merit (Z T ) for fixed n = 6×1020 cm−3 and (Z T )max with different alloy
compositions at 800 K.

Lattice thermal conductivity

Alloying has a strong influence on lattice thermal conductivity (Dismukes et al 1964). It is
partly due to a sizeable reduction in λL due to alloy disorder scattering of phonons that alloys are
automatically a better choice than the pure constituents. The reduction in λL may be of an order
of magnitude. Lattice thermal conductivity of Si–Ge alloys has been studied in detail (Drabble
and Goldsmid 1961, Dismukes et al 1964, Bhandari and Rowe 1988) in the framework of the
relaxation time approximation. Only a brief outline is being given here. Assuming the addition
of inverse relaxation times for various phonon scattering processes τ−1

C = ∑
i τ−1

i (τi being
the relaxation time for the particular scattering mechanism), the lattice thermal conductivity
is given by Drabble and Goldsmid (1961), Bhandari and Rowe (1988)

λL =
(

kB

h̄

)3 kB

2π2vs
T 3

∫ θD/T

0

x4e4

(ex − 1)2
τC dx . (14)

Here θD is the Debye temperature.
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Figure 4. (a) Variation of figure of merit (Z T ) with n at 1000 K for different alloy compositions
of Six Ge(1−x). (b) Variation of figure of merit (Z T ) for fixed n = 6 × 1020 cm−3 and (Z T )max
with different alloy compositions at 1000 K.

The main scattering agents that limit the phonon mean free path are scattering by phonons
and alloy disorder. Variation in lattice thermal conductivity of the alloys with composition
is due to disorder scattering; the phonon relaxation time for alloy disorder scattering can be
expressed in a simple form

τ−1
ph(disorder) = �ω2g(ω)

6N
. (15)

Here ω is the phonon frequency, N is the number of atoms in a crystal of volume V . �, which
is a measure of the strength of mass-difference scattering, is given by

� =
∑

i

fi

(
1 − Mi

M̄

)2

, (16)

fi is the fractional concentration of the i th type of atoms of mass Mi and M̄ = ∑
i fi Mi is the

average atomic mass. For the Debye model phonon density of states g(ω) = 3V ω2/2π2v3
s .

Here V is the crystal volume and vs is the average phonon velocity.
Further reduction in λL could be achieved by using powder compacts. Fine-grained Si–Ge

alloys have been earlier studied with reference to thermal conductivity reductions (Bhandari and
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Figure 5. (a) Variation of figure of merit (Z T ) with n at 1100 K for different alloy compositions.
(b) Variation of figure of merit (Z T ) for fixed n = 6×1020 cm−3 and (Z T )max with different alloy
compositions at 1100 K.

Table 1. Physical parameters of Si and Ge used in the calculations.

Eg (eV) m∗
d/m0 C11 (1011 N m−2) ξD (eV) λL (W m−1 K−1) NV

Silicon 1.15 1.06 1.66 12.8 150 6
Germanium 0.65 0.56 1.28 12.9 58 4

Rowe 1978a, 1978b). Up to a critical grain size electronic (hole) mean free path is not affected,
thereby causing an increased value of electrical to thermal conductivity ratio (Bhandari and
Rowe 1980).

Various physical parameters pertaining to the Si–Ge system are displayed in table 1.
For different alloy compositions λL has been obtained from alloy disorder scattering

formulae, equations (14)–(16). For other parameters such as Eg, md, C11 and ξD a linear
interpolation has been considered.
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Figure 6. (a) Variation of figure of merit (Z T ) with n at 1200 K for different alloy compositions
of Six Ge(1−x). (b) Variation of figure of merit (Z T ) for fixed n = 6 × 1020 cm−3 and (Z T )max
with different alloy compositions at 1200 K.

Results and discussion

A detailed calculation of power factor and dimensionless thermoelectric figure of merit Z T
has been presented as a function of carrier density (n), alloy composition (% silicon content, x)
and temperature. In figure 1 we present the power factor (α2σ ) plotted against (n) at 1000 K
for x ranging from 0.5 to 0.9. This figure is representative of variation of power factor at other
temperatures also. Optimal carrier density for various temperatures ranges from 2 × 1020 to
8 × 1020 cm−3. However, our primary aim is to obtain a realistic estimate of thermoelectric
figure of merit (Z T ) in a wide temperature range. Any difference between these alloys’
thermoelectric behaviour is reflected better in Z T , obviously due to significant differences
in λL. Figure 2(a) displays variation of Z T with carrier density at 600 K for various alloy
compositions. Figure 2(b) shows Z T against alloy composition for fixed n = 6 × 1020 cm−3

and (Z T )max, which is the peak value of Z T for a given temperature. Similar plots for the alloy
system at 800, 1000, 1100 and 1200 K are presented in figures 3(a) and (b), 4(a) and (b), 5(a)
and (b) and 6(a) and (b). Figures 7(a) and (b) display the variation of Z T with temperature
and alloy composition for two carrier concentrations. Thermoelectric devices operate over
a temperature range between temperatures of the hot and cold junctions. Theoretically each
temperature will have an optimum value for carrier density and alloy composition. However,
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Figure 7. (a) Variation of figure of merit (Z T ) with temperature (T ) at fixed n = 2 × 1020 cm−3

for different alloy compositions. (b) Variation of figure of merit (Z T ) with temperature (T ) at fixed
n = 6 × 1020 cm−3 for different alloy compositions.

this is not possible to achieve in device fabrication and therefore the best possible choice has
to be made. An alternative approach would be to consider cascading (Rowe and Bhandari
1983) which can help in choosing a different set of material parameters for each step. The
information based on such a study can be of help in choosing optimum values for material
parameters for various stages.

Figure 8 shows variation of Z T with x for temperatures above 1000 K at fixed n =
6 × 1020 cm−3. These results show that x ranging between 0.65 and 0.70 appears to be
ideally suited for best thermoelectric performance at temperatures exceeding 1000 K. Si–
Ge alloys are not among the best known materials at lower temperatures. However, at higher
temperatures (beyond 1000 K), these alloys provide a good choice for thermoelement material.
Results of present calculations indicate a range for x (0.5 < x < 0.7) for temperature range
600 < T < 1400 K. At 1600 K the optimum may increase to 0.8; this is expected as at higher
temperatures MCE can be countered by a larger energy gap.

It is also of interest to estimate the percentage reduction in Z T due to MCE. We have
calculated Z T in both single-band and two-band models and obtained the percentage change
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in Z T as we go from one model to another. Obviously this change is expected to rise with
(a) rising temperature, and (b) with lower carrier densities. Figure 9 displays such a variation
of �(Z T ) with temperature and reduced Fermi level for x = 0.7. The two curves for each
ξ indicate the effect of different types of MCE. Curves marked (I) indicate minority effects
without bipolar thermal conductivity (equation (12)) and curves (II) indicate all contributions
(equation (13)). This shows the significant presence of bipolar heat transport at temperatures
exceeding 1000 K. The results suggest the necessity of heavy doping to thwart dominance of
MCE to the extent possible.

In order that the figure of merit of the doped alloys be optimized, it is necessary to dope Si–
Ge alloys up to dopant concentrations at the solid solubility limits. In heavily doped materials
dopant precipitation (Raag 1978, Rowe and Bhandari 1983) has been reported resulting in
a change in electrical and thermoelectric properties. Hence the value of n appropriate for
consideration could be decided on the basis of two competing factors: (a) dopant precipitation,
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and (b) MCE (Rowe 1988). Larger n would increase precipitation whereas it will decrease
MCE. On the other hand a low value of carrier density (n) may result in low precipitation but
relatively high MCE. A proper balance between two factors may decide the optimum doping
level.

There have been suggestions that gallium phosphide added to the Si–Ge alloy system
could markedly increase the solid solubility (Wood 1988, Rowe et al 1989). It is not possible
to include such effects in the present work. However, if such a possibility exists larger doping
levels without the risk of significant precipitation could go a long way in enhancing performance
of the Si–Ge system up to around 1400 K without risk of performance degradation either due
to dopant precipitation, or due to MCE.

Recently Gurevich et al (1995, 2002) have presented a new approach to thermoelectric
phenomena which deals with thermo-emf in bipolar semiconductors. The theory takes into
account non-equilibrium distribution of electron and hole concentrations. Electron and hole
electric conductances of the contacts (between sample and connecting wires) may make
a substantial contribution to thermo-emf. However, as the authors themselves point out
determination of these conductances may be quite a difficult task (Gurevich et al 1995). In
addition to this, bulk and surface recombination of electrons and holes has been shown to be
crucial in thermoelectric effects (Gurevich 1997). In bipolar semiconductors both electrons
and holes diffuse down the temperature gradient, thereby increasing the electron and hole
concentrations near the cold junction. In this situation the usual relation np = n2

i (where n and
p are electron and hole equilibrium concentrations and ni is the intrinsic concentration) may
not be applicable. The correctness of this relation is based on the existence of common Fermi
levels for electrons and holes. However, in this situation the common Fermi level is split into
two Fermi quasi-levels. These aspects of non-equilibrium distribution and the recombination
processes could form the basis of a more rigorous future approach in the study of thermoelectric
phenomena.
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